
particle thermal relaxation time; E, activation energy; R, universal gas constant; U, poten- 
tial; 6(x), delta-function; q, heterogeneous reaction rate; ~, split probability. Subscripts: 
o, initial state; i, 2, parameters of two stable states; p, particle. 
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PERCOLATION AND DIFFUSION IN FRACTAL TURBULENCE 

A. G. Bershadskii* UDC 532.517.4 

Experimental data on passive-impurity diffusion in fractal turbulence are inter- 
preted on the basis of a percolational model. 

INTRODUCTION 

The geometry of the eddy field in turbulized fluid is extremely fragmentary. Fragments 
of fluid with high vorticity are interspersed with fragments with low vorticity. Taking 
into account that in steady turbulent motion there is practically no transfer of passive im- 
purity from the turbulent fragments to laminar fragments, but simply motion of the impurity 
with (and within) the turbulent fragments, fractal theory may be used to describe turbulent 
diffusion [i, 2]. The fact is that the problem of passive-impurity diffusion in homogene- 
ous turbulence is still far from solution. Experiments with hydrodynamic lattices to model 
homogeneous turbulence give inconsistent data, and remain to be interpreted [3, 4]. In 
large-scale experiments in the ocean, which may also model homogeneous turbulence, the well- 
known Richardson 4/3 law for the effective diffusion coefficient is also found to be nonuni- 
versal [5]. The reason for this is unclear. Could it be that the assumption of statistical 
homogeneity [6] is too limiting? Recently, this hypothesis has been weakened, substituting 
the less restrictive requirement of geometric self-similarity within some range of scales 
(e.g., see [i, 2]). This fractal approach may allow some of the features of impurity trans- 
port noted above to be taken into account and yield a theory which approximates the experi- 
mental effects. 

Several fractal models of turbulence now exist (e.g., see [i, 2, 7]) and more will cer- 
tainly appear in the future, since the approach to self-similar motion may take different 
forms, converging asymptotically on similar quasi-stable states [8]. The choice of a par- 
ticular model of this process is largely dictated by considerations of convenience. In the 
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present work, the fractal model adopted is the statistical model of critical percolation 
(e.g., see [9]), which is the most convenient for the investigation of passive-impurity 
diffusion. 

i. PERCOLATIONAL MODEL OF TURBULENT MOTION 

For the percolational model, the region in which the fluid moves is' notionally divided 
into cubic cells of side N (the Kolmogorov scale [6]). 

Eddies with this scale dissipate rapidly under the action of viscosity. At any given 
moment, the motion is turbulent in some N cells and laminar in others. This is known as in- 
termittency. The probability p of turbulization of each cell may now be introduced: when 
p = 0, there are no turbulized cells; when p << i, there are clusters consisting of a few 
turbulized cells; when p = I, all the cells are turbulized. There is a critical concentra- 
tion 0 < P0 < 1 at which an infinite cluster of turbulized cells initially appears. The 
appearance of this cluster significantly changes the physical situation. Whereas increase 
in the number of turbulized cells and dissipative processes account for the energy intro- 
duced before the appearance of this cluster, the presence of the cluster enables the energy 
to be dissipated to infinity, i.e., removed from the region of motion. In the presence of 
an infinite cluster, the concentration of turbulized cells may fluctuate. However, if there 
is balance between the energy introduced and the energy withdrawn through the cluster, the 
supercritical concentration appearing fluctuationally is removed because of the lack of an 
energy supply and the action of viscosity. In addition, only the skeleton is stable within 
the infinite cluster itself (for the same reason) [9]. The skeleton of the cluster is a set 
of cells belonging to infinite paths through the cluster, i.e., dead-end (finite) cell 
branches are damped under the action of viscosity for want of an energy input. 

This is a percolational lattice model; (e.g., see [9]). The clusters forming in these 
models are fractals [9], and the property of self-similarity replaces the concept of homo- 
geneity. In this sense, the term fractal turbulence may be used instead of homogeneous 
turbulence. Percolational clusters are characterized by some universal parameters, one of 
which is the fractal dimensionality. The fractal dimensionality of a critical percolational 
cluster is denoted by D i here, and that of its skeleton by D s. It is known that D i ~ 5/2 in 
three-dimensional space, and D i z 2.9 in two-dimensional space [9]. In three-dimensional 
space, as in two-dimensional space, D s ~ 5/3 to within ~10% [9]. In this context, it is ap- 
propriate to note the relation between the stable fractal dimensionality of turbulence and 
the index in the spectral law for the turbulent energy in the inertial interval in three- 
dimensional turbulence [2] 

E (k) ~ ~ - ~  (1)  

and to recall the Kolmogorov-Obukhov 5/3 law. 

2. INTERNAL AND EXTERNAL MOTION OF PASSIVE-IMPURITY PARTICLES 

The starting point here is that the passive-impurity particle, moving over the fractal 
volume occupied by the turbulized fluid, is practically unable to leave this volume and en- 
ter the laminar fluid. If a point is moving randomly in a homogeneous medium, the depend- 
ence of the mean square distance covered by the point in time t is 

( r 2 ) N t (2) 

(Brownian motion). In motion within a fractal 

< r 2 > ~ t2/(2+0), ( 3 )  

w h e r e  0 i s  t h e  a n o m a l o u s - d i f f u s i o n  c o e f f i c i e n t  [ 9 ] .  

Equation (3) may be regarded as describing diffusion in a medium with an effective dif- 
fusion coefficient [9] 

K .  (r) ~ r - ~  ( 4 )  

i.e., in motion within a fractal, the effective diffusion coefficient depends on the dis- 
tance, and Eq. (4) holds for any initial point of motion. The parameter Dw, which is the 
internal dimensionality of random motion over the fractal, is also used here; for free uni- 
form Brownian motion, D w = 2; for motion over a fractal 

, O ~ =  2 + |  (5) 
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The relation D w ~ 2 for motion over a fractal is associated with the repeated turning 
of a point moving in a fractal. Knowing the dimensionality of the fractal D, may the dimen- 
sionality of internal motion be found? 

According to the Alexander-Orbach hypothesis [9] 

2D/D~ = 4/3. (6)  

The u n i v e r s a l i t y  o f  t h i s  r e l a t i o n  i s  dubious  [9 ] .  

To e s t a b l i s h  a r e l a t i o n  between D and D w (and hence 0) when D i s  no t  too  l a r g e  (as  
shown below, f o r  D < 3, which i s  q u i t e  c o n v e n i e n t ) ,  c o n s i d e r  t h e  Brownian mot ion of  a p a r t i -  
c l e  o f  a f r a c t a l  o f  d i m e n s i o n a l i t y  D in  a space  of  d i m e n s i o n a l i t y  d, where d i s  no t  n e c e s -  
s a r i l y  an i n t e g e r .  The f r a c t a l  d i m e n s i o n a l i t y  Din o f  i n t e r s e c t i o n  o f  t h e  Brownian-motion 
f r a c t a l  ( d i m e n s i o n a l i t y  Do = 2) wi th  t he  t o p o l o g i c a l  boundary o f  t he  b a s i c  f r a c t a l  o f  dimen- 
s i o n a l i t y  (D - 1) in  a space  o f  d i m e n s i o n a l i t y  d i s  

Di= Do+(D--1)- -d .  (7)  

The minimum value of d at which Din = 0 is the fractal dimensionality of internal mo- 
tion, that is 

Dw = drain = Do + (D--  1). (8)  

I f  t h e  f r e e  mot ion  i s  Brownian, i . e . ,  Do = 2, i t  f o l l o w s  from Eq. (8)  t h a t  

D~ = D + 1. (9)  

�9 The fractal dimensionality of the topological boundary must be less than the fractal dimen- 
sionality of free motion here, or else the moving particle may simply be lost at the bound- 
ary. The corresponding condition is 

D o > D - 1 .  (10) 

For Brownian f r e e  mot ion ,  Do = 2; hence Eq. (9)  i s  a p p l i c a b l e  p r o v i d e d  D < 3. Remember 
t h a t  D i z 5/2 f o r  a c r i t i c a l  p e r c o l a t i o n a l  c l u s t e r  in  t h r e e - d i m e n s i o n a l  space ,  i . e . ,  Eq. (9)  
i s  a p p l i c a b l e .  

Now c o n s i d e r  t he  e x t e r n a l  mot ion o f  a p a s s i v e - i m p u r i t y  p a r t i c l e .  I f  t he  f r a c t a l  dimen- 
s i o n a l i t y  o f  t h e  t o p o l o g i c a l  f r a c t a l  boundary i s  l e s s  than  t h a t  o f  t he  f r e e - p a r t i c l e  mot ion ,  
i . e . ,  Eq. (10) h o l d s ,  t he  f r a c t a l  d i m e n s i o n a l i t y  o f  t h e  e x t e r n a l  i m p u r i t y - p a r t i c l e  motion 
w i l l  s imply  c o i n c i d e  wi th  t h a t  of  the  t o p o l o g i c a l  boundary ( s i n c e  t he  p a r t i c l e  cannot  l e a v e  

I t h e  f r a c t a l ) .  Denot ing  t h e  f r a c t a l  d i m e n s i o n a l i t y  of  e x t e r n a l  mot ion by Dw, i t  f o l l o w s  t h a t  
i f  Eq. (10)  h o l d s ,  ' 

D~ = D - - 1 .  (ii) 

To elucidate the role played by the topological boundary of the fractal, which is of 
dimensionality (D - i) and determines the fractal dimensionality of internal and external 
motion, consider a sphere of radius R. The number N of q cells within this sphere will in- 
crease with R as follows 

N N R  ~, ( i 2 )  

and here the impurity-particle flux over the fractal through the surface of this sphere is 
determined by the relative area intersected by the fractal at its surface, which increases 
with increase in R as R D-z 

3. CONCENTRATION OF PASSIVE IMPURITY 

The equation for the passive-impurity concentration at the fractal maybe written in 
spherical coordinates as follows [9] 

1 a KrD_l_o a__i_c - 
OC/~t-- rD_I O~- Or (uv) c' (13) 

where K is the diffusion coefficient; the second term on the right-hand side is the convec- 
tive impurity transfer. The variation in the first (diffusional) term on the right-hand 
side is related to ghe fractal properties of the region of impurity motion (Sec. 2) and the 
effective diffusion coefficient: K(r) = Kr -O. 

When r is sufficiently small and 8 > 0, the second term in Eq. (13) may be neglected 
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in comparison with the first, and the role of turbulence in impurity transport in this case 
reduces to the creation of the fractal region of its motion, i.e., to the formation of the 
effective diffusion coefficient. 

At the asymptote of large r, the solution of Eq. (13) (without the last term) takes the 
form [9] 

c(t)  ~ (Kt) -D/Dw. (14 )  

As follows from Eq. (14), m = 2D/D w is the index in the asymptotic degeneracy law 
c2(t); in percolation theory, it is called the fraction dimensionality [9]. The Alexander- 
Orbach hypothesis mentioned above, according to which m = 4/3, remains hypothetical in per- 
colational theory, but is used as an approximation. 

In laboratory experiments on the degeneracy of passive impurity behind hydrodynamic 
lattices, various values of m are obtained. For example, in [3], generalizing data for m 
obtained in different experiments, m = 1.31 • 10% was proposed. This conclusion obviously 
conflicts with the Alexander-Orbach hypothesis. However, the fairly significant spread in 
the values of m from experiment to experiment necessitates some explanation of the nonuni- 
versality of the values observed for m. 

Turning to the results of Sec. 2, this nonuniversality may be attributed to variation 
in D (and also D w) in the different experiments. The variation in D is due to the instabil- 
ity of D i (Sec. i), which relaxes to D s under the action of viscosity; therefore, D varies 
in the range 

D ~ D ~ D ~ .  (15) 

In Sec. 2, Eq. (9) expresses the relation between D and D w when D < 3. The range of 
variation of the index m 

follows from Eqs. (15) and (9) 

(for three-dimensional turbulence). 

ca(t) ~ t-'n, (16) 

10/8 ~.~ rn ~ 10/7 (17) 

The variability in m in the known experimental data for hydrodynamic lattices agrees 
with Eq. (17). 

4. EXTERNAL DIFFUSION 

Whereas the degeneracy of the passive-impurity concentration is determined by the in- 
ternal motion of the impurity particle, effects such as impurity-cloud expansion are deter- 
mined by the external motion. These and other properties depend on the fractal dimensional- 
ity of turbulence. When the fractal dimensionality of the topological boundary of turbu- 
lence is less than that of the trajectories of free motion of impurity particles, the ex- 
ternal motion is determined by the fractal dimensionality of this boundary (D - i) (Sec. 2). 

! 
In this case, D w in Eq. (5) must be replaced by D w to find @. Then 

@ = D ~ - - 2  = D - - 3 .  (18)  

I n  c o n t r a s t  t o  i n t e r n a l  m o t i o n ,  0 < 0 f o r  e x t e r n a l  m o t i o n . *  

T a k i n g  a c c o u n t  o f  Eq. ( 1 8 ) ,  i t  f o l l o w s  f rom Eq. (4 )  f o r  t h e  e f f e c t i v e  d i f f u s i o n  c o e f -  
f i c i e n t  that 

K ,  ~ r 3-D. (19)  

For  t h r e e - d i m e n s i o n a l  t u r b u l e n c e ,  i t  f o l l o w s  f rom Eq. (19)  t h a t  in  t h e  c a s e  o f  u n s t a b l e  
f r a c t a l  d i m e n s i o n a l i t y  D i z 5 /2  ( S e c .  1) 

*Note that the dynamics of turbulent-cluster transformation impose known limits on the ap- 
plicability of the given model. Thus, the characteristic time of turbulization (or degener- 
acy) of the cell with constant variation in cluster configuration must be considerably less 
than the characteristic times of the diffusion processes. Quantitative estimates of these 
time intervals fall far beyond the scope of the present. It is simply noted here that the 
situation improves with increase in Reynolds number. 
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Fig. i. Experimental observation of stable (a) and unstable 
(b) fractal dimensionality in a quasi-two-dimensional situa- 
tion, K, cm2/sec; r, cm. 

K ,  ~ r 1/2, (20) 

and for stable fractal dimensionality D s = 5/3 

K ,  ~ r4 /3  (21) 

i.e., the well-known Richardson law [5, 6]. 

For oceanological experiments, the two-dimensional case with impurity diffusion is of 
great interest. In this case, D i m 1.9, and hence 

K, " ' r  1/1 , (22) 

while for D s m 5/3 
K ,  N r 4Is. (23) 

Laws o f  t h e  t y p e  in  Eqs.  (22)  and (23)  a r e  t y p i c a l  f o r  o c e a n o l o g i c a l  e x p e r i m e n t s  on im- 
p u r i t y  d i f f u s i o n ;  s ee  [ 5 ] ,  f o r  example .  Two t y p e s  o f  dependence  o f  K, on r o b s e r v e d  in  
o c e a n o l o g i c a l  e x p e r i m e n t s  a r e  shown in  F i g .  1, which  i s  t a k e n  f rom [ 5 ] .  The r e a l i z a t i o n  o f  
a p a r t i c u l a r  t y p e  c o r r e s p o n d s  t o  t h e  s t a b l e  - Eq. (23)  - o r  u n s t a b l e  - Eq. (22)  - s i t u a t i o n  
in the given case. 

It is interesting to ask why both the stable and unstable states may be realized in 
oceanological experiments, whereas only the stable situation in Eq. (21) is evidently re- 
alized in atmospheric experiments. Note that, as follows from the foregoing, both stable 
and unstable fractal dimensionalities are evidently realized in experiments behind hydrody- 
namic lattices. 

CONCLUSIONS 

Thus, very complex and diverse geometric structures are present in turbulence which ap- 
pears homogeneous at first glance. These structures have the properties of spatial self- 
similarity, which may be replaced by the property of homogeneity in their description. Uni- 
versal critical characteristics of these structures of the type of fractal dimensionality 
have a significant influence on the impurity transport in such turbulence. Taking this in- 
fluence into account allows experimental data on impurity transport in laboratory conditions 
to be related to data obtained in large-scale natural processes. 

NOTATION 

q, cosmological length scale; D, fractal dimensionality; c, passive-impurity concentra- 
tion; K, diffusion coefficient. 
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BOUNDARY CONDITIONS FOR THE HEAT- AND MASS- 

TRANSFER EQUATIONS OF COARSELY DISPERSE AEROSOLS 

IN A TURBULENT FLOW 

I. V. Derevich and V. M. Eroshenko UDC 532.529 

Boundary conditions taking account of particle interaction with the boundary 
surface are obtained on the basis of the Chapman-Enskog method of solving the 
kinetic equation. 

In the turbulent flow of coarsely disperse aerosols in channels, the dynamic relaxation 
time of the particles considerably exceeds the lifetime of the energy-content pulsations of 
the carrying flux. In this case, processes occurring in the interaction of the discrete 
phase with the surface exert a significant influence on the dynamic and thermal characteris- 
tics of the disperse flow. In calculations of the turbulent disperse flows, the collision 
of particles with the walls is taken into account by formulating the corresponding boundary 
conditions for the hydrodynamic and heat- and mass-transfer equations. In [1-4], the bound- 
ary condition for the concentration of Brownian particles at a partially absorbing surface 
was constructed. The boundary concentration for the concentration of disperse impurity in 
the turbulent flow, taking account of inhomogeneity of the turbulent-pulsation field, the 
mass force, and the degree of particle entrainment in the turbulent motion, was found in 
[5]. The boundary conditions of [i-5] are conditions of the third kind for the particle- 
diffusion equations and relate the concentration value and its gradient at the surface. The 
distinguishing feature of these boundary conditions is the nonzero particle concentration at 
an absolutely absorbing wall. 

The distribution of the pulsational characteristics of inertial particles in an inhomo- 
geneous turbulent flow is determined by the ratio between the scale of inhomogeneity of the 
pulsational field of the carrier phase and the pulsational inertial path length of the parti- 
cle s = Tu aI/2 [6, 7]. If the inertial path length of the particle is comparable with the 
characteristic scale of inhomogeneity of the turbulent pulsations of the fluid phase close 
to the channel wall, the intensity of pulsational motion of the discrete phase in the wall 
region is determined by the pulsational energy of the particle acquired in the flow core. 
In this case, the intense turbulent motion of particles around the wall leads to effective 
turbulent transfer of the mean flow characteristics (axialvelocity, temperature) from the flow 
core to the surface. The description of such flow must be based on the two-velocity andtwo-tempera- 
ture approximation, when the equations for the particle velocity and temperature are used together 
with the equations for the mean velocity and temperature of the carrier phase. On account of the 
intense transverse turbulent transfer in the solid phase between the flow core and the wall 
region, the equations for the mean characteristics of the discrete phase are of diffusional 
type. Accordingly, the formulation of boundary conditions taking account of the processes 
occurring at particle contact with surface is an urgent problem. 

In the present work, a closed system of equations and boundary conditions for calculat- 
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